The cooling of a body 

Before considering methods by which the specific heat capacity of a material may be found we must think about what happens in any experiment where heat is added to a body. The body will gain energy but it will also lose energy to the surroundings. In fact the bigger the temperature difference between an object and its surroundings the greater will be the rate of loss of heat energy. This becomes zero when the object reaches the same temperature as its surroundings. You can see an example of this is Figure 1.

The law govern​ing the rate of loss of heat from a body to its surround​ings was first proposed by Newton in 1701 and is therefore known as Newton's law of cooling. He pro​posed that:


This can be expressed mathematically as:

and if C is the thermal capacity of the body as:


This has been found to hold very well for forced con​vection, where the air velocity is >4 ms-1 but not too well in still air, that is, for natural convection.

For natural convection the law has been shown experimentally to be a 5/4 power law. 

That is:
The following set of results may be used to investigate the law of natural convection.

	Excess temperature (oC)
	20
	30
	40
	50
	60
	70

	Rate of loss of heat (Js-1)
	0.212
	0.350
	0.501
	0.660
	0.830
	1.01

	lg(excess temperature)
	1.301
	1.477
	1.602
	1.699
	1.778
	1.845

	lg(rate of loss of heat)
	-0.674
	-0.456
	-0.300
	-0.180
	-0.081
	0.004


If a graph is plotted of lg(excess temperature) against lg(rate of heat loss) the validity of the law can be checked.

Heat losses can be useful, in fact essential in some cases. Engines are cooled with water or air and integrated circuits that work at relatively high power are set in a piece of blackened aluminium.


The cooling correction

If we add heat to a perfectly insulated body at a steady rate then a graph of the temperature of the body against time will be a straight line (Figure 2(a)). However, if we now take into account the loss of heat a graph similar to Figure 2(b) will be obtained.

Clearly the final temperature in Figure 2(b) needs to be corrected for this loss of heat.

Figure 2(b) shows the cooling of the body after the supply of energy has been switched off at to. To enable us to correct the rise of temperature for heat loss we will assume forced convection and that Newton's law of cooling holds.

It can be shown that:

S1/S2
where  is the cooling correction, and hence the true final temperature due to heating can be calculated.


The simplest way to allow for the cooling is to cool the object to a few degrees below room temperature before heating begins. The object therefore gains heat from the sur​roundings in the first part of the heating process and loses it in the second (see Figure 2(c)).
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The rate of loss of heat of a body by cooling in a steady stream of air is proportional to the excess temperature ( - s) of the body above its sur�roundings.





- dH/dt = k(s)








-Cd/dt= k(s)








-dH/dt = k(s)5/4
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Example problem


An electrical immersion heater with a power of 50 W  is used to heat a glass beaker of mass 75 g containing 200 g of water. If the initial temperature of the beaker and the water is 15oC calculate the temperature after 3 minutes of heating. 


You can assume that no heat energy is lost to the surroundings.





Electrical energy input = VIt = Power x time = 50x3x60 = 9000 J


Heat energy gained by the water and the glass   = 0.075x600x(T – 15) + 0.20x4200x(T – 15)


= 45T – 675 + 840T – 12600 = 885T-13275





Therefore:			 9000 + 13275 = 22275 = 885T   and so T = 25.2oC








PAGE  
1

